Hierarchical Decomposition: An Intuitive Approach
Holonomy Decomposition: Finally Some Explanations

Attila Egri-Nagy Chrystopher L. Nehaniv

Centre for Research and Mathematics
School of Computing, Engineering and Mathematics
University of Western Sydney

Centre for Computer Science and Informatics Research
University of Hertfordshire

2014.06.19.
Big, abstract ideas and how they appear in the holonomy decomposition of finite transformation semigroups.

<table>
<thead>
<tr>
<th>abstract idea</th>
<th>holonomy decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>approximation</td>
<td>?</td>
</tr>
<tr>
<td>compression</td>
<td>?</td>
</tr>
<tr>
<td>hierarchical structure</td>
<td>?</td>
</tr>
</tbody>
</table>
approximation

Using a sequence of simpler systems, in which the members are increasingly similar to but not the same as the original system to be approximated.

- a curve imitated by increasingly more straight line segments with smaller and smaller length
compression

When several copies of the same component exist in a system, then it is enough to deal with a single copy of the components and the locations of the copies.

- units with the same floorplan in a towerhouse
- subgroup and a transversal (coset representatives)
Control information goes in one direction only – component connections are defined by a directed acyclic graph, but in practice we do rooted trees.

- arithmetic
- robotic arm
In the holonomy decomposition of finite transformation semigroups we approximate states and transformations, then we compress approximation data and finally put the encoded form into a hierarchical structure (cascade product).
A \textit{transformation} is a function from a set to itself, $f : X \rightarrow X$.

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 3 & 5 & 5 & 3 \end{pmatrix}, \ X = \{1, 2, 3, 4, 5\}$$
We can combine transformations by stacking them...

\[
f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 3 & 5 & 5 & 3 \end{pmatrix}, \quad g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 1 & 5 \end{pmatrix}
\]
...and then by following the connected lines...
...we get another transformation.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 3 & 5 & 5 & 3 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 1 & 1 & 5 \\
\end{pmatrix}
=
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 5 & 5 & 1 \\
\end{pmatrix}
= fg
\]

Acting on the state set: \(X^f = \{3, 5\} \), \(X^g = \{1, 2, 3, 5\} \), \(X^{fg} = \{1, 5\} \)
transformation semigroup

A *transformation semigroup* \((X, S)\) of degree \(n\) is a collection \(S\) of transformations of an \(n\)-element set \(X\) closed under function composition.

Flip-flop, the 1-bit memory semigroup.

So these are computational devices... \(\approx\) automata
btw.

<table>
<thead>
<tr>
<th>\mathcal{T}_0</th>
<th>$#\text{subsemigroups}$</th>
<th>$#\text{conjugacy classes}$</th>
<th>$#\text{isomorphism classes}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{T}_1</td>
<td>2</td>
<td>2 (1)</td>
<td>2</td>
</tr>
<tr>
<td>\mathcal{T}_2</td>
<td>10</td>
<td>8 (2)</td>
<td>7</td>
</tr>
<tr>
<td>\mathcal{T}_3</td>
<td>1 299</td>
<td>283 (4)</td>
<td>267</td>
</tr>
<tr>
<td>\mathcal{T}_4</td>
<td>3 161 965 550</td>
<td>132 069 776 (22)</td>
<td>TBA</td>
</tr>
</tbody>
</table>

A215650, A215651 http://oeis.org

hierarchical decompositions of finite transformation semigroups

<table>
<thead>
<tr>
<th>Building Blocks</th>
<th>Natural Numbers</th>
<th>Finite Automata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Multiplication</td>
<td>Cascade Product</td>
</tr>
<tr>
<td>Precision</td>
<td>Equality</td>
<td>Division, Emulation</td>
</tr>
<tr>
<td>Uniqueness</td>
<td>Unique</td>
<td>Different Decompositions</td>
</tr>
</tbody>
</table>

For computer algebra implementations we use the holonomy decomposition.
Approximating states – subset chains

Definition (Chain)
A chain c is a set of elements of $\mathcal{P}(X)$ with the property that for any $A, B \in c$ either $A \subseteq B$ or $B \subseteq A$.

Example (subset chains in general)
$X = \{1, 2, 3, 4, 5\}$

\[
\begin{align*}
\{1, 2, 3, 4, 5\} & \quad \{1, 2, 3, 4, 5\} \\
\{2, 4, 5\} & \quad \{1, 3, 4, 5\} \\
\{4\} & \quad \{1, 3, 4\} \\
\{1, 2, 3, 4, 5\} & \quad \{2, 3, 4, 5\} \\
\{3, 4\} & \quad \{3, 4\} \\
\{4\} & \quad \{4\}
\end{align*}
\]

In the holonomy decomposition we act on subset chains, which needs a bit of orchestration.
extended image set

\[I(X) = \{ X \cdot s \mid s \in S \} \]

\[I'(X) = I(X) \cup \{ \{x\} \mid x \in X \} \cup X \]

maximal chains in \(I'(X) \) are tile chains
tiles \rightarrow reptiles \rightarrow integers
<table>
<thead>
<tr>
<th>abstract idea</th>
<th>holonomy decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>approximation</td>
<td>subset chains, tile chains, acting on tiles</td>
</tr>
<tr>
<td>compression</td>
<td>?</td>
</tr>
<tr>
<td>hierarchical structure</td>
<td>?</td>
</tr>
</tbody>
</table>
Compression – equivalence classes

Subduction relation

\[P \subseteq_M Q \iff \exists s \in M \text{ such that } P \subseteq Q \cdot s \quad P, Q \in \mathcal{I}(X), \quad (1) \]

i.e. we can transform \(Q \) to include \(P \) under the action of \(M \). Therefore, subduction is a generalized inclusion, i.e. inclusion under the action of the trivial monoid.

\[P \equiv_M Q \iff P \subseteq_M Q \text{ and } Q \subseteq_M P. \]

\[P \equiv_M Q \implies |P| = |Q| \text{ and } P = Qs, \; Q = Pt \text{ for some } s, t \in M. \]
holonomy groups
holo what?

Definition (holonomy in differential geometry)
Given a smooth closed curve C on a surface M, and picking any point P on that curve, the holonomy of C in M is the angle by which some vector turns as it is parallel transported along the curve C from point P all the way around and back to point P.

(wiktionary.org)
<table>
<thead>
<tr>
<th>abstract idea</th>
<th>holonomy decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>approximation</td>
<td>subset chains, tile chains, acting on tiles</td>
</tr>
<tr>
<td>compression</td>
<td>equivalence under action, encoding-decoding</td>
</tr>
<tr>
<td>hierarchical structure</td>
<td>?</td>
</tr>
</tbody>
</table>
hierarchical structure – cascade product

\[(X_1, S_1), \ldots, (X_n, S_n)\]

A state is an \(n\)-tuple \(x = (x_1, \ldots, x_n)\), \(x_i \in X_i\).

Definition

A dependency function \(d_i\) of level \(i\) for a list of components \(L\) is a function

\[
d_i : X_1 \times \cdots \times X_{i-1} \rightarrow S_i, \quad i \in \mathbb{n}.
\]

A dependency function of level \(i\) takes \(i - 1\) arguments.
Definition

A *transformation cascade* for a given list of components is an \(n \)-tuple of dependency functions \((d_1, \ldots, d_n)\), where \(d_i \) is a dependency function of level \(i \).

The action of a permutation cascade \(d = (d_1, \ldots, d_n) \) on coordinates \(x = (x_1, \ldots, x_n) \) for level \(i \) is defined by

\[
x_i^d := x_i^{d_i(x_1, \ldots, x_{i-1})}
\]

thus the full action is

\[
x^d = (x_1, \ldots, x_n)^{(d_1, \ldots, d_n)} = \left(x_1^{d_1(\emptyset)}, x_2^{d_2(x_1)}, \ldots, x_n^{d_n(x_1, \ldots, x_{n-1})}\right).
\]
Coordinate tuples as paths in a tree

The set of coordinate tuples \{ (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2) \} can be represented by a tree.
Acting on a tree

A permutation acting on points can be also thought as acting on a 1-level tree. For instance $(1, 3, 2)$ acting on

```
  1  2  3
   /  \\  \\
  2   3   1
```

yields

```
  2  3  1
   /  \\  \\
  1   2   3
```

Now we can simply indicate this action on the branches by simply putting the permutation in the root node.

```
(1,3,2)
  1  2  3
   /  \\  \\
  2   3   1
```
Permutation Cascade

Dependencies: $\emptyset \mapsto (1, 2), (1) \mapsto () (2) \mapsto () (1, 1) \mapsto (1, 2, 3), (1, 2) \mapsto (2, 3), (2, 1) \mapsto (1, 3, 2), (2, 2) \mapsto (1, 3, 2)$.

\[
\begin{array}{c}
(1,2) \\
\downarrow \\
1 \\
\downarrow \\
1 \\
\downarrow \\
1,2,3 \\
\end{array}
\quad
\begin{array}{c}
() \\
\downarrow \\
1 \\
\downarrow \\
1 \\
\downarrow \\
1,2,3 \\
\end{array}
\quad
\begin{array}{c}
() \\
\downarrow \\
2 \\
\downarrow \\
2 \\
\downarrow \\
1,2,3 \\
\end{array}
\quad
\begin{array}{c}
() \\
\downarrow \\
1 \\
\downarrow \\
1 \\
\downarrow \\
1,2,3 \\
\end{array}
\]
Multiplying Cascades

\[
\begin{array}{ccc}
(1,2) & (1,2) & () \\
1 \quad 2 & 1 \quad 2 & 1 \quad 2 \\
() & (1,2) & () \\
1 \quad 2 & 1 \quad 2 & 1 \quad 2 \\
() & (1,3,2) & () \\
1 \quad 2 \quad (1,3,2) & 1 \quad 2 \quad (1,3,2) & 1 \quad 2 \quad (1,3,2) \\
() & (1,2) & () \\
1 \quad 2 & 1 \quad 2 & 1 \quad 2 \\
() & (1,2,3) & (1,3,2) & (1,2,3)
\end{array}
\]
<table>
<thead>
<tr>
<th>abstract idea</th>
<th>holonomy decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>approximation</td>
<td>tiling of subsets, tile chains</td>
</tr>
<tr>
<td>compression</td>
<td>equivalence under action, encoding-decoding</td>
</tr>
<tr>
<td>hierarchical structure</td>
<td>the placement of components, cascade product</td>
</tr>
</tbody>
</table>
ultimate goals

- what is computable with n states?
- how is the computation done?
Thank You!

Group & semigroup decomposition software:

SgpDec http://sgpdec.sf.net

On computational semigroup theory:

http://compsemi.wordpress.com