Coalgebraic Perspectives on Abstract State Machines

Daniel Schreckling Eric Rothstein

IT-Security Group
University of Passau
Passau, Germany

BIOMICS Summer Workshop
June 2014
Coalgebraic and Monadic Perspectives on Abstract State Machines

Daniel Schreckling Eric Rothstein

IT-Security Group
University of Passau
Passau, Germany

BIOMICS Summer Workshop
June 2014
Research Agenda in BIOMICS

(Partial) Goal

- Definition and implementation of an interaction machine
- Specification of computation through *behaviour*
- Machine and specifications reflect construction principles known from bio-chemical systems
Research Agenda in BIOMICS

(Partial) Goal

- Definition and implementation of an interaction machine
- Specification of computation through *behaviour*
- Machine and specifications reflect construction principles known from bio-chemical systems

Research Steps (Backup plan)
(Partial) Goal

- Definition and implementation of an interaction machine
- Specification of computation through *behaviour*
- Machine and specifications reflect construction principles known from bio-chemical systems

Research Steps (Backup plan)

- Describe structures and dynamics of systems using (co)algebra
- Find a specification language which can be modelled using (co)algebra
- Use category theory to map (co)algebras of system to (co)algebraic properties of the language
ASM: Candidate for the specification language in BIOMICS
ASM: Candidate for the specification language in BIOMICS

Requirements

- Understanding of the modelling methodology and formalities
- **Mapping structural and dynamical ASM properties to (co)algebras**
- Defining Links between other system (from biology) and ASMs
- Refine expressive power of ASMs to a language we need
Contents

Motivation
 Research Agenda in BIOMICS
 Motivation Behind this Paper

ASMs vs. Coalgebraic Specifications
 Abstract State Machine Specifications
 Coalgebras and their Specifications

Potential Insights for ASMs
 From a Coalgebraic Perspective
 From a Monadic Perspective

First Coalgebraic and Monadic Perspective on ASMs

Next Steps and Conclusions
Motivation

Main Idea of Abstract State Machines
- Combines developments of formal logic in decades
- Tarksi: structures, including functions and predicates over real world items (most general mathematical framework)
- First order logic: developed to define and analyze structures
- ASMs are direct consequence: introduce algorithms on real world objects
Motivation

- Main Idea of Abstract State Machines
 - Combines developments of formal logic in decades
 - Tarski: structures, including functions and predicates over real world items (most general mathematical framework)
 - First order logic: developed to define and analyze structures
 - ASMs are direct consequence: introduce algorithms on real world objects

- What to use it for?
 - Description of procedures involving real world items
 - Specifying steps of dynamic, discrete systems
 - Verification of software models
 - ...
Motivation

Main Idea of Abstract State Machines
- Combines developments of formal logic in decades
- Tarski: structures, including functions and predicates over real world items (most general mathematical framework)
- First order logic: developed to define and analyze structures
- ASMs are direct consequence: introduce algorithms on real world objects

What to use it for?
- Description of procedures involving real world items
- Specifying steps of dynamic, discrete systems
- Verification of software models
- ...

Why Abstract States?
- Systems are described using different levels of abstraction
- Details and semantics of states determine abstraction
Abstract States — A Definition

Let \(\mathcal{V} \) denote a finite **Vocabulary** of tuples \((f, k)\)

- \(f \) are names (character sequences) of functions and relations
- \(k \) specifies their arity \(f \)
- \((true, 0), (false, 0), (\bot, 0), (Boole, 0)\) are in every \(\mathcal{V} \)
- Boolean operators and equality sign are in \(\mathcal{V} \)
Abstract States — A Definition

- Let Υ denote a finite **Vocabulary** of tuples (f, k)
 - f are names (character sequences) of functions and relations
 - k specifies their arity f
 - $(true, 0), (false, 0), (⊥, 0), (Boole, 0)$ are in every Υ
 - Boolean operators and equality sign are in Υ

- Let $T(\Upsilon)$ denote a set of **Terms**
 - if $(f, 0) \in \Upsilon$, then $f \in T(\Upsilon)$
 - if $(f, k) \in \Upsilon$, $t_1, \ldots, t_k \in T(\Upsilon)$, then $f(t_1, \ldots, t_k) \in T(\Upsilon)$.
Abstract States — A Definition

- Let γ denote a finite **Vocabulary** of tuples (f, k)
 - f are names (character sequences) of functions and relations
 - k specifies their arity f
 - $(true, 0), (false, 0), (\perp, 0), (Boole, 0)$ are in every γ
 - Boolean operators and equality sign are in γ

- Let $T(\gamma)$ denote a set of **Terms**
 - if $(f, 0) \in \gamma$, then $f \in T(\gamma)$
 - if $(f, k) \in \gamma, t_1, \ldots, t_k \in T(\gamma)$, then $f(t_1, \ldots, t_k) \in T(\gamma)$.

- Let $S(\gamma)$ denote the set of all **Structures** S where S satisfies
 - it has a fixed *base set* X
 - it has an interpretation \mathcal{I}_S for functions/terms in γ
Abstract States — A Definition

- Let Υ denote a finite **Vocabulary** of tuples (f, k)
 - f are names (character sequences) of functions and relations
 - k specifies their arity f
 - $(true, 0), (false, 0), (\bot, 0), (Boole, 0)$ are in every Υ
 - Boolean operators and equality sign are in Υ

- Let $T(\Upsilon)$ denote a set of **Terms**
 - if $(f, 0) \in \Upsilon$, then $f \in T(\Upsilon)$
 - if $(f, k) \in \Upsilon$, $t_1, \ldots, t_k \in T(\Upsilon)$, then $f(t_1, \ldots, t_k) \in T(\Upsilon)$.

- Let $S(\Upsilon)$ denote the set of all **Structures** S where S satisfies
 - it has a fixed *base set* X
 - it has an interpretation \mathcal{I}_S for functions/terms in Υ

- **States** are described by (first-order) structures
Updates Transit Between Abstract States

- **Primitive updates**
 - consider states S as memory space
 - if $(f, k) \in \Upsilon$ and the k-tuple \bar{a} has elements from base set X, (f, \bar{a}) is a **location**
 - let (f, \bar{a}, b) denote an **update** of location \bar{a} with b
 - change in memory Δ by update u is denoted by $\Delta(u, S)$
Updates Transit Between Abstract States

- **Primitive updates**
 - consider states S as memory space
 - if $(f, k) \in \mathcal{Y}$ and the k-tuple \vec{a} has elements from base set X, (f, \vec{a}) is a location
 - let (f, \vec{a}, b) denote an update of location \vec{a} with b
 - change in memory Δ by update u is denoted by $\Delta(u, S)$

- **Update rules**
 - terms as arguments allow for programming with updates
 - update rules R of vocabulary \mathcal{Y} have the form
 $$f(t_1, \ldots, t_k) := t_0$$
 with k-ary function f and terms t_0, \ldots, t_k
 - firing updates now requires evaluating the terms in a state S
Updates Transit Between Abstract States

- **Primitive updates**
 - consider states S as memory space
 - if $(f, k) \in \Upsilon$ and the k-tuple \overline{a} has elements from base set X, (f, \overline{a}) is a **location**
 - let (f, \overline{a}, b) denote an **update** of location \overline{a} with b
 - change in memory Δ by update u is denoted by $\Delta(u, S)$

- **Update rules**
 - terms as arguments allow for programming with updates
 - update rules R of vocabulary Υ have the form $f(t_1, \ldots, t_k) := t_0$ with k-ary function f and terms t_0, \ldots, t_k
 - firing updates now requires evaluating the terms in a state S

- **Parallel updates** are grouped in a **par** rule R
 - allows to group multiple update rules R_1, \ldots, R_j
 - change of memory in S: $\Delta(R, S) = \Delta(R_1, S) \cup \ldots \cup \Delta(R_j, S)$
Conditional Rules and Programs for ASMs

- Conditional rule R
 - Boolean term ϕ over Υ
 - Rules R_1, R_2 in Υ

 \[
 \text{if } \phi \text{ then } R_1 \text{ else } R_2 \text{ endif}
 \]
 - Common semantics, i.e. $\Delta(R, S) = \Delta(R_1, S)$ if ϕ valuates to true in S, $\Delta(R_2, S)$ otherwise
Conditional Rules and Programs for ASMs

- Conditional rule R
 - Boolean term ϕ over γ
 - Rules R_1, R_2 in γ

 \[
 \text{if } \phi \text{ then } R_1 \text{ else } R_2 \text{ endif}
 \]
 - Common semantics, i.e. $\Delta(R, S) = \Delta(R_1, S)$ if ϕ valuates to true in S, $\Delta(R_2, S)$ otherwise

- Program Π over γ
 - Π is a rule over γ
 - $\Delta(\Pi, S)$ is well defined for every state S defined by γ
 - changes applied to S by Π are defined by $\tau_\Pi(S) = S + \Delta(\Pi, S)$
A Small Example for an ASM Rule/Program

- Input: \(a, b \in \mathbb{N} \)
- Output: \(d = \gcd(a, b) \)
- A single step in the Euclidean Algorithm can be described by

\[
\begin{align*}
\text{if } & \quad b = 0 \quad \text{then } \quad d := a \\
\text{else if } & \quad b = 1 \quad \text{then } \quad d := 1 \\
\text{else} & \\
& \quad \text{par} \\
& \quad \quad a := b \\
& \quad \quad b := a \mod b \\
& \quad \text{endpar} \\
\text{endif}
\end{align*}
\]

\((a = 12, b = 6, d = \bot) s_1\)
A Small Example for an ASM Rule/Program

- Input: $a, b \in \mathbb{N}$
- Output: $d = \gcd(a, b)$
- A single step in the Euclidean Algorithm can be described by

```plaintext
if $b = 0$ then $d := a$
else if $b = 1$ then $d := 1$
else
  par
    $a := b$
    $b := a \mod b$
  endpar
endif
```

$(a = 12, b = 6, d = \bot)s_1 \to (6, 0, \bot)s_2$
A Small Example for an ASM Rule/Program

- Input: $a, b \in \mathbb{N}$
- Output: $d = \gcd(a, b)$
- A single step in the Euclidean Algorithm can be described by

```plaintext
if b = 0 then d := a
else if b = 1 then d := 1
else
  par
  a := b
  b := a \mod b
  endpar
endif
```

$(a = 12, b = 6, d = \bot)S_1 \rightarrow (6, 0, \bot)S_2 \rightarrow (6, 0, 6)S_3$
Abstract State Machine (ASM)

Definition
An (sequential) ASM M is denoted by $M = (\Upsilon, \Pi, \mathcal{B}, \mathcal{S}, \mathcal{I}, \tau)$

- Vocabulary Υ
- Program Π over Υ
- Base set \mathcal{B}
- Set of abstract states $\mathcal{S}(\Pi)$
- Set of initial states $\mathcal{I}(\Pi) \subset \mathcal{S}(\Pi)$
- transition function τ_{Π}
Coalgebraic & Monadic Perspectives on ASMs

Coalgebras — A Definition

Definition (F-Coalgebras)

Given are a category \(\mathcal{C} = (O, M, s, t, c) \) and functor \(F : \mathcal{C} \to \mathcal{C} \). \(\mathcal{C} = \langle C, \tau \rangle_F \) is called \(F \)-coalgebra, if \(C \in O \), and \(\tau \in M \) with \(\tau : C \to F(C) \). \(C \) is called carrier ‘set’ (or state space) and \(\tau \) is called structure (or transition) of coalgebra \(\mathcal{C} \).
Coalgebras Structure Codomains

- Imperative programs without side-effects, exceptions, non-termination, etc.

\[i := 5 \quad \quad S \xrightarrow{i:=5} S \]
Coalgebraic & Monadic Perspectives on ASMs

ASMs vs. Coalgebraic Specifications

Coalgebras and their Specifications

Coalgebras Structure Codomains

- Imperative programs without side-effects, exceptions, non-termination, etc.

 \[i := 5 \quad S \xrightarrow{i:=5} S \]

- Extend state set to account for non-termination by introducing new symbol \(\perp \) with \(S_\perp = S \cup \{ \perp \} \)

 \[
 \begin{align*}
 & \text{statement} \\
 S_\perp \xrightarrow{\text{statement}} S_\perp
 \end{align*}
 \]
Coalgebraic & Monadic Perspectives on ASMs

ASMs vs. Coalgebraic Specifications
Coalgebras and their Specifications

Coalgebras Structure Codomains

- Imperative programs without side-effects, exceptions, non-termination, etc.

\[i := 5 \quad \quad S \xrightarrow{\text{\texttt{i:=5}}} S \]

- Extend state set to account for non-termination by introducing new symbol \(\bot \) with \(S_\bot = S \cup \{ \bot \} \)

\[
\begin{array}{c}
\text{statement} \\
S_\bot \xrightarrow{\text{statement}} S_\bot
\end{array}
\]

- Account for exceptions \(E \)

\[
S \cup \{ \bot \} \cup (S \times E) \xrightarrow{\text{statement}} S \cup \{ \bot \} \cup (S \times E)
\]
Imperative programs without side-effects, exceptions, non-termination, etc.

\[i := 5 \quad S \xrightarrow{i:=5} S \]

Extend state set to account for non-termination by introducing new symbol \(\perp \) with \(S_{\perp} = S \cup \{ \perp \} \)

\[\text{statement} \quad S_{\perp} \xrightarrow{\text{statement}} S_{\perp} \]

Account for exceptions \(E \)

\[S \cup \{ \perp \} \cup (S \times E) \xrightarrow{\text{statement}} S \cup \{ \perp \} \cup (S \times E) \]

Question

What if we kept a constant state set and structure the codomain?
Coalgebras are about Observations

- Consider sequences A^∞ over a set A
 - finite sequences $A^* = \langle a_1, a_2, \ldots, a_n \rangle$
 - infinite sequences $A^\mathbb{N} = \langle a_1, a_2, \ldots \rangle$
 - all sequences $A^\infty = A^* \cup A^\mathbb{N}$

- Consider function next

 \[
 \text{next} : A^\infty \longrightarrow \{\bot\} \cup (A \times A^\infty)
 \]

 defined by the total function σ with symbol \bot

 \[
 \sigma \longmapsto \begin{cases} \bot & \text{if } \sigma \text{ is the empty sequence} \\ (a, \sigma') & \text{if } \sigma = a \cdot \sigma' \text{ with head } a \text{ and tail } \sigma' \end{cases}
 \]

- Applying next generates all observable elements of A^∞
Coalgebraic & Monadic Perspectives on ASMs

Coalgebras and Behaviours

- Properties of the function \textit{next}
 - coalgebra of type $\{\bot\} \cup (A \times (-))$
 - terminal (final) coalgebra among all F-coalgebras with $F(S) = \{\bot\} \cup (A \times S)$
Coalgebras and Behaviours

- Properties of the function next
 - coalgebra of type $\{\bot\} \cup (A \times \{-\})$
 - terminal (final) coalgebra among all F-coalgebras with $F(S) = \{\bot\} \cup (A \times S)$

- Implications of Terminality
 - final coalgebras (objects) are unique up to isomorphism
 - there is a unique behaviour function $\text{beh}_c : S \rightarrow A^\infty$ for any F-coalgebra with state space S and $c : S \rightarrow \{\bot\} \cup (A \times S)$
Coalgebraic & Monadic Perspectives on ASMs

ASMs vs. Coalgebraic Specifications

Coalgebras and their Specifications

Coalgebras and Behaviours

- Properties of the function \textit{next}
 - coalgebra of type \(\bot \cup (A \times (-))\)
 - terminal (final) coalgebra among all F-coalgebras with \(F(S) = \{\bot\} \cup (A \times S)\)

- Implications of Terminality
 - final coalgebras (objects) are unique up to isomorphism
 - there is a unique \textit{behaviour} function \(beh_c : S \rightarrow A^\infty\) for any F-coalgebra with state space \(S\) and \(c : S \rightarrow \{\bot\} \cup (A \times S)\)
 - \(beh_c\) is a homomorphism of coalgebras

\[
\begin{array}{c}
\{\bot\} \cup (A \times S) \\
\text{\textup{\textup{\textup{\textit{\textup{id}}}} \cup \text{\textup{\textup{\textit{\textup{id}}}} \times \text{\textup{\textup{\textit{\textup{beh}}}}}}}} \quad \downarrow
\end{array}
\quad \begin{array}{c}
\bot \cup (A \times A^\infty) \\
\text{\textup{\textup{\textit{\textup{next}}}}} \quad \downarrow
\end{array}
\begin{array}{c}
S \\
\text{\textup{\textup{\textit{\textup{beh}}}}} \quad \downarrow
\end{array}
\begin{array}{c}
A^\infty
\end{array}
\]
Terminal F-coalgebra determines behaviour for any coalgebra in category $\text{CoAlg}(F)$.
Terminal F-coalgebras and their Existence

- Terminal F-coalgebra determines behaviour for any coalgebra in category $\text{CoAlg}(F)$

\[
F(X) \xrightarrow{F(\mathit{beh}_c)} F(Z)
\]

\[
X \xrightarrow{\mathit{beh}_c} Z
\]

- Unfortunately: No guarantee that terminal F-coalgebra exists
Terminal F-coalgebras and their Existence

- Terminal F-coalgebra determines behaviour for any coalgebra in category $\text{CoAlg}(F)$

$$F(X) \xrightarrow{F(beh_c)} F(Z)$$

\xrightarrow{c} \uparrow \uparrow^ζ $\xrightarrow{beh_c}$ $\xrightarrow{}$ X $\xrightarrow{}$ Z

- Unfortunately: No guarantee that terminal F-coalgebra exists
- But: Finite Kripke polynomial functors have terminal F-coalg.
- Various non-trivial methods to find terminal coalgebras
Bisimilarity and F-coalgebras

Comparing systems using a terminal coalgebra is simple
Bisimilarity and F-coalgebras

Comparing systems using a terminal coalgebra is *simple*
What if the terminal coalgebra does not exist or is hard to find?
Bisimilarity and F-coalgebras

Comparing systems using a terminal coalgebra is \textit{simple}
What if the terminal coalgebra does not exist or is hard to find?
Bisimulation is a means for comparing \textit{behaviour}
Bisimilarity and F-coalgebras

Comparing systems using a terminal coalgebra is *simple*
What if the terminal coalgebra does not exist or is hard to find?
Bisimulation is a means for comparing *behaviour*

- **Relation lifting**
 - $F : \text{Set} \rightarrow \text{Set}$ be a polynomial functor
 - X, Y arbitrary objects in Set
 - Relation lift sends $R \subseteq X \times Y$ to $Rel(F)(R) \subseteq F(X) \times F(Y)$
Bisimilarity and F-coalgebras

Comparing systems using a terminal coalgebra is simple. What if the terminal coalgebra does not exist or is hard to find? Bisimulation is a means for comparing behaviour.

- **Relation lifting**
 - Let $F : \text{Set} \to \text{Set}$ be a polynomial functor.
 - Let X, Y be arbitrary objects in Set.
 - Relation lift sends $R \subseteq X \times Y$ to $\text{Rel}(F)(R) \subseteq F(X) \times F(Y)$.

- **Bisimulation**
 - Let $c : X \to F(X)$ and $d : Y \to F(Y)$ be two coalgebras on F.
 - Relation $R \subseteq X \times Y$ describes the bisimulation for c and d which is closed under c and d:
 \[
 \forall x \in X, y \in Y, (x, y) \in R \Rightarrow (c(x), d(y)) \in \text{Rel}(F)(R)
 \]
Comparing systems using a terminal coalgebra is *simple*. What if the terminal coalgebra does not exist or is hard to find? Bisimulation is a means for comparing *behaviour*.

- **Relation lifting**
 - $F : \text{Set} \to \text{Set}$ be a polynomial functor
 - X, Y arbitrary objects in Set
 - Relation lift sends $R \subseteq X \times Y$ to $\text{Rel}(F)(R) \subseteq F(X) \times F(Y)$

- **Bisimulation**
 - Let $c : X \to F(X)$ and $d : Y \to F(Y)$ be two coalgebras on F.
 - Relation $R \subseteq X \times Y$ describes the bisimulation for c and d which is closed under c and d:
 \[\forall x \in X, y \in Y, (x, y) \in R \Rightarrow (c(x), d(y)) \in \text{Rel}(F)(R) \]

- **Bisimilarity**: Union of all bisimulations
More Potential Insights

▶ Specification Refinements
▶ Feasible Logics for BIOMICS ASMs (rather counterintuitive)
▶ Monads and their Adjunctions
Monads

Definition (Monad)

A monad \((T, \eta, \mu)\) in a category \(C\) consists of an endofunctor \(T : C \to C\) with the following two natural transformations

- **unit** \(\eta : 1_C \to T\)
- **multiplication** \(\mu : T^2 \to T\)

for which the following two diagrams commute:
First Attempt to Model ASMs using Coalgebra

<table>
<thead>
<tr>
<th>ASM</th>
<th>Coalgebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary: Functions, Relations, Terms</td>
<td>Given implicitly by a functor, e.g. $T(X) = \prod_i (B_i + C_i \times X)^{A_i}$</td>
</tr>
</tbody>
</table>
First Attempt to Model ASMs using Coalgebra

<table>
<thead>
<tr>
<th>ASM</th>
<th>Coalgebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary: Functions, Rela-</td>
<td>Given implicitly by a functor, e.g. $T(X) = \prod_i (B_i + C_i \times X)^{A_i}$</td>
</tr>
<tr>
<td>tions, Terms</td>
<td>arbitrary A_i, B_i, C_i, fixed by T</td>
</tr>
<tr>
<td>Base Set \mathcal{B}</td>
<td></td>
</tr>
</tbody>
</table>
First Attempt to Model ASMs using Coalgebra

<table>
<thead>
<tr>
<th>ASM</th>
<th>Coalgebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary: Functions, Relations, Terms</td>
<td>Given implicitly by a functor, e.g. $T(X) = \prod_i(B_i + C_i \times X)^{A_i}$</td>
</tr>
<tr>
<td>Base Set \mathcal{B}</td>
<td>arbitrary A_i, B_i, C_i, fixed by T</td>
</tr>
<tr>
<td>Abstract State</td>
<td>Carrier set U and attributes A</td>
</tr>
</tbody>
</table>
First Attempt to Model ASMs using Coalgebra

<table>
<thead>
<tr>
<th>ASM</th>
<th>Coalgebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary: Functions, Rela-</td>
<td>Given implicitly by a functor, e.g. $T(X) = \prod_i (B_i + C_i \times X)^{A_i}$</td>
</tr>
<tr>
<td>tions, Terms</td>
<td></td>
</tr>
<tr>
<td>Base Set \mathcal{B}</td>
<td>arbitrary A_i, B_i, C_i, fixed by T</td>
</tr>
<tr>
<td>Abstract State</td>
<td>Carrier set U and attributes A</td>
</tr>
<tr>
<td>Interpretation in a state</td>
<td>Coalgebra $c : U \rightarrow T(U)$ (incl. $c_i : U \times A_i \rightarrow B_i + C_i \times U$)</td>
</tr>
</tbody>
</table>
First Attempt to Model ASMs using Coalgebra

<table>
<thead>
<tr>
<th>ASM</th>
<th>Coalgebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary: Functions, Relations, Terms</td>
<td>Given implicitly by a functor, e.g. $T(X) = \prod_i (B_i + C_i \times X)^{A_i}$</td>
</tr>
<tr>
<td>Base Set B</td>
<td>arbitrary A_i, B_i, C_i, fixed by T</td>
</tr>
<tr>
<td>Abstract State</td>
<td>Carrier set U and attributes A</td>
</tr>
<tr>
<td>Interpretation in a state</td>
<td>Coalgebra $c : U \rightarrow T(U)$ (incl. $c_i : U \times A_i \rightarrow B_i + C_i \times U)$</td>
</tr>
<tr>
<td>Initial states \mathcal{I}</td>
<td>Initial element $u_0 \in U$</td>
</tr>
</tbody>
</table>
First Attempt to Model ASMs using Coalgebra

<table>
<thead>
<tr>
<th>ASM</th>
<th>Coalgebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary: Functions, Relations, Terms</td>
<td>Given implicitly by a functor, e.g. $T(X) = \prod_i (B_i + C_i \times X)^{A_i}$</td>
</tr>
<tr>
<td>Base Set B</td>
<td>arbitrary A_i, B_i, C_i, fixed by T</td>
</tr>
<tr>
<td>Abstract State</td>
<td>Carrier set U and attributes A</td>
</tr>
<tr>
<td>Interpretation in a state</td>
<td>Coalgebra $c : U \rightarrow T(U)$ (incl. $c_i : U \times A_i \rightarrow B_i + C_i \times U$)</td>
</tr>
<tr>
<td>Initial states \mathcal{I}</td>
<td>Initial element $u_0 \in U$</td>
</tr>
<tr>
<td>Tansitions τ_P</td>
<td>Coalgebra $c : U \rightarrow T(U)$</td>
</tr>
</tbody>
</table>
First Attempt to Model ASMs using Coalgebra

<table>
<thead>
<tr>
<th>ASM</th>
<th>Coalgebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary: Functions, Relations, Terms</td>
<td>Given implicitly by a functor, e.g. $T(X) = \prod_i (B_i + C_i \times X)^{A_i}$</td>
</tr>
<tr>
<td>Base Set B</td>
<td>arbitrary A_i, B_i, C_i, fixed by T</td>
</tr>
<tr>
<td>Abstract State</td>
<td>Carrier set U and attributes A</td>
</tr>
<tr>
<td>Interpretation in a state</td>
<td>Coalgebra $c : U \rightarrow T(U)$ (incl. $c_i : U \times A_i \rightarrow B_i + C_i \times U$)</td>
</tr>
<tr>
<td>Initial states I</td>
<td>Initial element $u_0 \in U$</td>
</tr>
<tr>
<td>Tansitions τ_I</td>
<td>Coalgebra $c : U \rightarrow T(U)$</td>
</tr>
<tr>
<td>Composition</td>
<td>Monad M_{ASM}</td>
</tr>
</tbody>
</table>
First Attempt to Model ASMs using Coalgebra

<table>
<thead>
<tr>
<th>ASM</th>
<th>Coalgebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary: Functions, Relations, Terms</td>
<td>Given implicitly by a functor, e.g. $T(X) = \prod_i (B_i + C_i \times X)^{A_i}$</td>
</tr>
<tr>
<td>Base Set \mathcal{B}</td>
<td>arbitrary A_i, B_i, C_i, fixed by T</td>
</tr>
<tr>
<td>Abstract State</td>
<td>Carrier set U and attributes A</td>
</tr>
<tr>
<td>Interpretation in a state</td>
<td>Coalgebra $c : U \rightarrow T(U)$ (incl. $c_i : U \times A_i \rightarrow B_i + C_i \times U$)</td>
</tr>
<tr>
<td>Initial states \mathcal{I}</td>
<td>Initial element $u_0 \in U$</td>
</tr>
<tr>
<td>Tansitions τ_{Π}</td>
<td>Coalgebra $c : U \rightarrow T(U)$</td>
</tr>
<tr>
<td>Composition</td>
<td>Monad M_{ASM}</td>
</tr>
<tr>
<td>Seq. of states or $\Delta(\Pi, I), I \in \mathcal{I}$</td>
<td>maps of c_i to terminal coalgebra</td>
</tr>
</tbody>
</table>
First Attempt to Model ASMs using Coalgebra

<table>
<thead>
<tr>
<th>ASM</th>
<th>Coalgebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary: Functions, Relations, Terms</td>
<td>Given implicitly by a functor, e.g. $T(X) = \prod_i (B_i + C_i \times X)^{A_i}$</td>
</tr>
<tr>
<td>Base Set B</td>
<td>arbitrary A_i, B_i, C_i, fixed by T</td>
</tr>
<tr>
<td>Abstract State</td>
<td>Carrier set U and attributes A</td>
</tr>
<tr>
<td>Interpretation in a state</td>
<td>Coalgebra $c : U \rightarrow T(U)$ (incl. $c_i : U \times A_i \rightarrow B_i + C_i \times U$)</td>
</tr>
<tr>
<td>Initial states I</td>
<td>Initial element $u_0 \in U$</td>
</tr>
<tr>
<td>Tansitions τ_Π</td>
<td>Coalgebra $c : U \rightarrow T(U)$</td>
</tr>
<tr>
<td>Composition</td>
<td>Monad M_{ASM}</td>
</tr>
<tr>
<td>Seq. of states or $\Delta(\Pi, I), I \in I$</td>
<td>maps of c_i to terminal coalgebra</td>
</tr>
<tr>
<td>Equivalence</td>
<td>Bisimilarity</td>
</tr>
</tbody>
</table>
Next Steps

- Precise coalgebraic definition
- Terminal coalgebra for ASMs used in BIOMICS
- Find Feasible ASM Monad
- Kleisli and/or Eilenberg Moore categories for ASMs?
- Bialgebras for ASM Modelling?
- Modelling interaction of ASMs with the environment
Conclusions

- Mapping ASMs to coalgebras appear to be *obvious*.
- Expressiveness of ASMs complicate coalgebraic definition.
- New insights may not be new but have coalgebraic grounding.
- Algebraic/coalgebraic basis can become essential for BIOMICS.
- BIOMICS may invert the intended use of ASMs (from *synthesis* to *analysis*).
 - Derive BIOMICS interaction machine from ASMs through (co)algebraic refinement.
 - Express bio-chemical pathways using ASMs.