Finsler 2-manifolds with maximal holonomy group of infinite dimension

Z. Muzsnay

joint work with P.T. Nagy

2015 International Conference and Workshop on Lie Groups, Differential Equations and Geometry

Chongqing University of Technology, Chongqing, China.
Parallel translation, holonomy

- M is simply connected
- Finslerian metric: $g = g_{ij}(x, y)dx^i \otimes dx^j$
- Geodesics: $\ddot{x}^i + 2G^i(x, \dot{x}) = 0, \quad G^i := \frac{1}{4}g^{il}\left(2\frac{\partial g_{jl}}{\partial x^k} - \frac{\partial g_{jk}}{\partial x^l}\right)y^jy^k$.
- Parallel vector field $X(t)$ along a curve $c(t)$:
 \[\nabla_{\dot{c}}X(t) = \left(\frac{dX^i(t)}{dt} + \Gamma^i_j(c(t), X(t))\dot{c}^j(t)\right)\frac{\partial}{\partial x^i} = 0, \quad \Gamma^i_j = \frac{\partial G^i}{\partial y^j}. \]
- Parallel translation along a curve $c : [0, 1] \to M$:
 \[\tau_c : T_{c_0}M \to T_{c_1}M, \quad \Rightarrow \begin{cases} \tau(\lambda v) = \lambda \tau(v) \\ \|\tau(v)\| = \|v\| \end{cases} \Rightarrow \tau_c : \mathcal{I}_{c_0} \to \mathcal{I}_{c_1} \]
- The holonomy group is generated by parallel translation along closed curves
 \[\Rightarrow \text{subgroup of } \text{Diff}_+^{\infty}(\mathcal{I}_x) \text{ determined by parallel translations.} \]
Parallel translation: geometric construction

\[\tau(M) \]

\[\tau(v) = w \]
• $R \equiv 0$

• $R \neq 0$
Tangent Lie algebras to a subgroup \(H \) of \(\text{Diff}^\infty(\mathcal{I}) \)

Def: • A vector field \(X \) is *tangent* to \(H \), if there exists a differentiable curve of diffeomorphisms \(\{\phi_t\} \) in \(H \) such that

\[
\phi_0 = \text{Id}, \quad \frac{\partial \phi_t}{\partial t} \bigg|_{t=0} = X.
\]

• A Lie subalgebra \(\mathfrak{h} \) of \(\mathfrak{X}^\infty(\mathcal{I}) \) is called *tangent* to \(H \), if all elements of \(\mathfrak{h} \) are tangent to \(H \).

\[\mathfrak{h} \text{ tangent to } H \implies \text{information on } H \]

Property: If \(\mathfrak{h} \) is tangent to a closed subgroup \(H \), then

\[
\exp(\mathfrak{h}) \subset H
\]
Definition: A vector field \(X \) is **strongly tangent** to a subgroup \(H \), if there exists a \(k \in \mathbb{N} \) and a smooth \(k \)-parameter family \(\{ \phi(t_1,\ldots,t_k) \} \) of diffeomorphisms in \(H \) such that

1. \(\phi(t_1,\ldots,t_k) = \text{Id}, \) if \(t_j = 0 \) for some \(1 \leq j \leq k; \)

2. \[\frac{\partial^k \phi(t_1,\ldots,t_k)}{\partial t_1 \ldots \partial t_k} \bigg|_{(t_1,\ldots,t_k)=(0,\ldots,0)} = X. \]

Proposition: The Lie algebra generated by strongly tangent vector fields is tangent to \(H \).

\[
X_1 \text{ strongly tangent } \Rightarrow \{ \phi^1_{(t_1,\ldots,t_{k_1})} \} \quad \Rightarrow \quad [\phi^1_{(t_1,\ldots,t_{k_1})}, \phi^2_{(t_1,\ldots,t_{k_2})}]
\]

\[
X_2 \text{ strongly tangent } \Rightarrow \{ \phi^2_{(t_1,\ldots,t_{k_2})} \}
\]

\[
[\phi^1_{(t_1,\ldots,t_{k_1})}, \phi^2_{(t_1,\ldots,t_{k_2})}] = \left(\phi^1_{(t_1,\ldots,t_{k_1})} \right)^{-1} \circ \left(\phi^2_{(t_1,\ldots,t_{k_2})} \right)^{-1} \circ \left(\phi^1_{(t_1,\ldots,t_{k_1})} \right) \circ \left(\phi^2_{(t_1,\ldots,t_{k_2})} \right)
\]

\[
[\phi^1_{(t_1,\ldots,t_{k_1})}, \phi^2_{(t_1,\ldots,t_{k_2})}] \quad \Rightarrow \quad [X_1, X_2]
\]
Tangent Lie algebras to the $\text{Hol}_x(M)$

Proposition: $\mathcal{K}_x(M)$ and $\mathfrak{hol}^*_x(M)$ are tangent to $\text{Hol}_x(M)$.

- $\mathcal{K}(M)$: the *curvature algebra* is the smallest Lie algebra generated by curvature vector fields.

- $\mathfrak{hol}^*(M)$: the *infinitesimal holonomy algebra* is the smallest Lie algebra generated by curvature vector fields and by horizontal Berwald differentiation.
Projectively flat Finsler surfaces of constant curvature

Remarks:
• \(\dim M = 2 \),
• \(\mathcal{I}_x \simeq S^1 \),
• \(\text{Hol}_x(M) \subset \text{Diff}_+^{\infty}(S^1) \)
• \(\dim \mathcal{R}_x(M) \leq 1 \),
• \(\text{hol}^*_x(M) \) can be higher (even infinite) dimensional,
• \(G^i = \mathcal{P}(x, y)y^i \),
• \(R^i_{jk} = \lambda \left(\delta^i_j g_{km}y^m - \delta^i_k g_{jm}y^m \right) \).
Theorem. The holonomy group of a projectively flat, spherically symmetric Finsler 2-manifolds of constant curvature is maximal:

$$ \text{Hol}(\bar{M}) = \text{Diff}^\infty_+(S^1). $$

Proof: there exists $x_o \in M$, where $\mathcal{F}(x_o, y) = \|y\|$ and $\mathcal{P}(x_o, y) = c \cdot \|y\|

- $\mathcal{I}_{x_o} = S^1$, $\text{Hol}_o(M) \subset \text{Diff}^\infty_+(S^1)$
- $\text{hol}_{x_o}^*(M) \supset \mathcal{F}(S^1) = \left\{ \cos nt \frac{\partial}{\partial t}, \sin nt \frac{\partial}{\partial t} \right\}_{n \in \mathbb{N}} \Rightarrow \mathcal{F}(S^1) = \text{hol}_{x_o}^*(M) = \mathcal{X}(S^1)$
- $\exp(\mathcal{X}(S^1)) = \exp(\text{hol}_{x_o}^*(M)) \subset \exp(\text{hol}_{x_o}^*(M)) \subset \text{Diff}^\infty_+(S^1)$
- $\left\langle \exp(\mathcal{X}(S^1)) \right\rangle \subset \left\langle \exp(\text{hol}_{x_o}^*(M)) \right\rangle \subset \text{Hol}_o(M) \subset \text{Diff}^\infty_+(S^1)$
- $\left\langle \exp(\mathcal{X}(S^1)) \right\rangle$ conj. inv. \Rightarrow normal subgroup in $\text{Diff}^\infty_+(S^1)$
- $\text{Diff}^\infty_+(S^1)$ simple

$$ \Rightarrow \left\langle \exp(\mathcal{X}(S^1)) \right\rangle = \text{Diff}^\infty_+(S^1) \Rightarrow \text{Hol}_o(M) = \text{Diff}^\infty_+(S^1) $$

Corollary: The holonomy group of the Funk metric (constant negative curvature) and of the Bryant-Shen 2-spheres (constant positive curvature) are maximal.
Projectively flat Finsler surfaces of constant curvature

Theorem: The holonomy group of a locally projectively flat Finsler surface of constant curvature is finite dimensional if and only if

1. $R = 0$,

2. $R \neq 0$ and the associated canonical connection is linear.

- If $\lambda \neq 0$, ∇ is nonlinear: suppose that $\text{Hol}(M)$ is finite dimensional:

 S. Lie: If a finite-dimensional connected Lie group acts on a 1-dimensional manifold without fixed points, than its dimension is less than 4.

 - $x_0 \in M$, $\xi = R_{x_0}(X, Y)$
 - ∇ nonlinear $\Rightarrow \{\xi, \nabla_1 \xi, \nabla_2 \xi\}$ \mathbb{R}-linearly independent,
 - $\{\xi, \nabla_1 \xi, \nabla_2 \xi, \nabla_i \nabla_j \xi\}$ \mathbb{R}-linearly dependent,
 - $\left\{1, \frac{\partial P}{\partial y^1}, \frac{\partial P}{\partial y^2}, 2\frac{\partial P}{\partial y^i} \frac{\partial P}{\partial y^j} - \lambda g_{ij}\right\}$ \mathbb{R}-linearly dependent
 - $\lambda g_{ij} = 2P_i P_j + A_{ij} + B_{ij}^m P_m$, $A_{ij}, B_{ij} \in \mathbb{R}$,
 - $g_{ij} = \partial_{y^i y^j} E \Rightarrow \partial_i g_{jk} - \partial_k g_{ij} = 0 \Rightarrow$ PDE on P
\[\begin{align*}
2\mathcal{P}_2\mathcal{P}_{11} - 2\mathcal{P}_1\mathcal{P}_{12} + b_2\mathcal{P}_{11} + (c_2 - b_1)\mathcal{P}_{12} - c_1\mathcal{P}_{22} &= 0, \\
2\mathcal{P}_1\mathcal{P}_{22} - 2\mathcal{P}_2\mathcal{P}_{12} - b_3\mathcal{P}_{11} + (b_2 - c_3)\mathcal{P}_{12} + c_2\mathcal{P}_{22} &= 0.
\end{align*}\]

\[\mathcal{P}(x_0, y) = y_2 \cdot f\left(\frac{y_1}{y_2}\right) \Rightarrow \begin{cases}
f''\left(\frac{2}{y_2} f + \frac{b_2}{y_2} + (b_1 - c_2) \frac{y_1}{y_2} + \frac{c_1 y_1^2}{y_2^3}\right) = 0, \\
f''\left(\frac{2y_1}{y_2} f - \frac{b_3}{y_2} + (c_3 - b_2) \frac{y_1}{y_2} + \frac{c_2 y_1^2}{y_2^3}\right) = 0.
\end{cases}\]

\[t = \frac{y_1}{y_2} \Rightarrow \begin{cases}
2f + b_2 + (b_1 - c_2)t + c_1 t^2 = 0, \\
2tf - b_3 + (c_3 - b_2)t + c_2 t^2 = 0.
\end{cases}\]

\[b_3 + (2b_2 - c_3)t - (2c_2 - b_1)t^2 + c_1 t^3 \equiv 0,\]

\[f(t) = -b_2 - c_2t, \quad \mathcal{P}(x_0, y) = -y_2b_2 - c_2y_1\]

\[\Rightarrow \mathcal{P} \text{ is linear} \Rightarrow \nabla \text{ is linear} \Rightarrow \text{contradiction.}\]

\[\Rightarrow \text{Hol}_{x_0}(M) \text{ is infinite dimensional.}\]
References

Acknowledgements: The research by the authors leading to these results was funded in part by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 318202.