Classification of Semisimple Lie Algebras

Károly Podoski
University of Debrecen
General overview

ODE → Lie group ↔ Lie algebra

Simple groups (of Lie type) ↔ (Semi)simple Lie algebras

Simple groups

Finite State Machines
Introduction to Lie algebras

- Classical Lie algebras are algebras with Lie bracket or commutator: \([x,y] = xy - yx\)

Example \((gl(2, \mathbb{C}), sl(2, \mathbb{C}))\). Let the general linear algebra \(gl(2, \mathbb{C})\) over the complex numbers \(\mathbb{C}\) consist of the \(2 \times 2\) matrices:

\[
gl(2, \mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{C} \right\}.
\]

Special linear algebra \(sl(2, \mathbb{C})\)

\[
sl(2, \mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a, b, c \in \mathbb{C} \right\}.
\]
Abstract Lie algebras

Definition A vector space \(L \) over a field \(F \) with a bilinear operation \(L \times L \to L \) denoted by \((x, y) \mapsto [x, y] \) (called Lie bracket) is called a Lie algebra over \(F \) if the following axioms are satisfied:

1. \([x, y] = -[y, x]\) for all \(x, y \in L \),

2. \([x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0\) for all \(x, y, z \in L \). This is called the Jacobian identity.

A subset \(S \) of a Lie algebra \(L \) is called a Lie subalgebra if \(S \) is a subspace which is closed under the Lie bracket.

Let \(S_1, \ldots, S_n \) be subspaces or subalgebras of a Lie algebra \(L \). Then \(L \) is the direct sum of \(S_i \), that is

\[L = \bigoplus_{i=1}^n S_i, \]

if and only if every element of \(L \) can be uniquely written as \(\sum_{i=1}^n s_i \), where \(s_i \in S_i \).
Abstract Lie algebras

A homomorphism $\phi: L_1 \to L_2$ is a linear map satisfying $\phi([x, y]) = [\phi(x), \phi(y)]$.

$\text{im } \phi = \{ \varphi(x) \mid x \in L_1 \} \subseteq L_2$

$\text{ker } \phi = \{ x \in L_1 \mid \phi(x) = 0 \} \subseteq L_1$

The quotient Lie algebra L/I is the factor space (as quotient vector space) with elements $\{ x + I \mid x \in L \}$, and let us define the Lie bracket as $[x + I, y + I] = [x, y] + I$.

Theorem (Homomorphism theorem). Let L_1, L_2 be Lie algebras over the field F and let $\phi: L_1 \to L_2$ be a homomorphism. Then

$L_1/\ker \phi \simeq \text{im } \phi.$
Abstract Lie algebras

The derived subalgebra \([L, L]\) is the smallest Lie subalgebra of \(L\) containing all elements \([x, y]\) (for all \(x, y \in L\)).

The center of a Lie algebra \(L\) (denoted by \(Z(L)\)) consists of those elements with which the Lie bracket is identically zero:

\[
Z(L) = \{ z \in L : [z, x] = 0 \text{ for all } x \in L \}.
\]

A Lie algebra \(L\) called Abelian if every Lie-bracket is zero, that is \(L = Z(L)\). The center of an arbitrary Lie algebra is Abelian.

If a Lie algebra \(L\) is not Abelian (\([L, L] \neq 0\)) and \(L\) has no nontrivial ideals then we call \(L\) is simple.

For any element \(x \in L\) of a Lie algebra \(L\) let \(\text{ad}_x : L \to L\) be the linear map defined by \(\text{ad}_x(y) = [x, y]\). s the adjoint representation \(\text{ad} : L \to \mathfrak{gl}(L)\), \(\text{ad} : x \mapsto \text{ad}_x\).
Abstract Lie algebras

Define a sequence of ideals of L called the derived series by $L^0 = L, L^1 = [L, L], L^2 = [L^1, L^1], \ldots, L^i = [L^{i-1}, L^{i-1}]$. Let us call L solvable if $L^n = 0$ for some n.

Every simple Lie algebra is nonsolvable, since $L^n = L$ for every positive integer n.

If L does not contain any non-zero solvable ideal then L is called semisimple.

An L is semisimple if and only if L is a direct sum of simple Lie-algebras.
Cartan decomposition

If L is semisimple, then we have root space decomposition or Cartan decomposition, that is L is the direct sum (as subspaces) of H and of the subspaces L_r:
\[L = H \oplus (\bigoplus_{r \in \Phi} L_r). \]

H is an Abelian subalgebra called Cartan subalgebra
\{ $\text{ad}_h \mid h \in H$ \} is simultaneously diagonalizable
$L_r = \{ x \in L \mid [h, x] = r(h)x \text{ for all } h \in H \}$ where $r: H \to \mathbb{C}$ is a linear map
H^* is the dual space of H that is the vectorspace of all linear functions from H to \mathbb{C}
The set of all nonzero (linear functions) $r \in H^*$ for which $L_r \neq 0$ is denoted by Φ. The elements of Φ are called roots and Φ is called a root system.
Example \((sl(2, \mathbb{C}))\). Let \(L = sl(2, \mathbb{C})\). Then

\[
H = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & -\alpha \end{pmatrix} : \alpha \in \mathbb{C} \right\}
\]

is a Cartan subalgebra. Note that every Cartan subalgebra can be written as \(P^{-1}HP\) where \(P\) is an invertible matrix of size \(2 \times 2\).

Let \(h = \begin{pmatrix} \alpha & 0 \\ 0 & -\alpha \end{pmatrix} \in H\) and \(x = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}\). Now,

\[
[h, x] = \begin{pmatrix} 0 & 2\alpha b \\ -2\alpha c & 0 \end{pmatrix}.
\]

That is, \(ad_h\) (for \(h \in H\)) is diagonal in the basis \(e_{11} - e_{22}, e_{12}, e_{21}\):

\[
ad_h = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2\alpha & 0 \\ 0 & 0 & -2\alpha \end{pmatrix}.
\]
That is, ad_h (for $h \in H$) is diagonal in the basis $e_{11} - e_{22}, e_{12}, e_{21}$:

$$\text{ad}_h = \begin{pmatrix}
0 & 0 & 0 \\
0 & 2\alpha & 0 \\
0 & 0 & -2\alpha
\end{pmatrix}.$$

Consequently, the Cartan decomposition of L is

$$L = H \oplus L_r \oplus L_{-r},$$

where

$$L_r = \{ \lambda e_{12} \mid \lambda \in \mathbb{C} \},$$

$$L_{-r} = \{ \lambda e_{21} \mid \lambda \in \mathbb{C} \},$$

and

$$r : H \rightarrow \mathbb{C} \quad r(h) = r \left(\begin{pmatrix}
\alpha & 0 \\
0 & -\alpha
\end{pmatrix} \right) = 2\alpha.$$

Now, $\dim H = 1$, $\dim L_r = 1$, $\dim L_{-r} = 1$ and the root system is $\Phi = \{ r, -r \}$.

BIOMICS
Killing form

If $x, y \in L$, define $\kappa(x, y) = \text{Tr}(\text{ad}_x \text{ad}_y)$. Then κ is a symmetric bilinear form on L, called the **Killing form**.

The Killing form κ is associative in the sense that $\kappa([x, y], z) = \kappa(x, [y, z])$.

Let L be a Lie-algebra. Then L is semisimple if and only if its Killing form is nondegenerate.

Since the restriction of the Killing form κ to H is nondegenerate we can identify H with H^*: to every $r \in H^*$ corresponds a unique element $t_r \in H$ satisfying

$$r(h) = \kappa(t_r, h) \text{ for all } h \in H.$$

Now, we can introduce a scalar product $(.,.)$ on H^* such that

$$(r, s) = \kappa(t_r, t_s) \text{ for all } r, s \in H^*.$$
Abstract root systems

Let V be a real Euclidean space of finite dimension l with scalar product (\cdot, \cdot). Let w_r denote the reflection to the hyperplane orthogonal to the non-zero vector r. That is, for $x \in V$ we have

$$w_r(x) = x - \frac{2(r,x)}{(r,r)} r.$$

Now, $w_r(r) = -r$ and $w_r(y) = y$ for all y with $(r,y) = 0$.

1. Φ is a set of non-zero vectors.
2. Φ spans V.
3. If $r, s \in \Phi$ then $w_r(s) \in \Phi$.
4. If $r, s \in \Phi$ then $2(r,s)/(r,r)$ is an integer.
5. If $r, \lambda r \in \Phi$, where $\lambda \in \mathbb{R}$ then $\lambda = \pm 1$.

The rank of a root system Φ is the dimension of V (spanned by Φ): \[\text{rank } \Phi = \dim V = l. \]

$$A_{sr} = \frac{2(r,s)}{(s,s)} = 2\frac{||r||}{||s||} \cos \theta.$$
Root systems of rank 2

Classifying root systems of rank 2 we obtain only four different root systems. $A_1 \times A_1$ is a reducible root system, A_2, B_2 and G_2 are irreducible root systems.
A root system Φ is called **indecomposable** (or **irreducible**) if it cannot be partitioned into the union of two proper subsets such that each root in one set is orthogonal to every root in the other set by the scalar product (\cdot, \cdot).

A semisimple L Lie algebra is simple if and only if the corresponding root system Φ is indecomposable.

Existence theorem Let Φ be an indecomposable root system. Then there exists a simple Lie algebra over \mathbb{C} which has a root system equivalent to Φ.

Isomorphism theorem. Any two simple Lie algebras over \mathbb{C} with equivalent root systems are isomorphic.
Let Φ be a system of roots. A subset $\Pi \subset \Phi$ is called a fundamental root system (or base) if the following axioms are satisfied.

1. Π is linearly independent.

2. Every root in Φ is a linear combination of roots in Π with coefficients which are either all non-negative or all non-positive.

If Π is a fundamental system in Φ then $(r, s) \leq 0$ for all different elements r, s in Π.
Dynkin diagrams

- Infinite series

\[A_l \ (l \geq 1) : \quad 1 \quad 2 \quad 3 \quad \cdots \quad l-1 \quad l \]

\[B_l \ (l \geq 2) : \quad 1 \quad 2 \quad \cdots \quad l-2 \quad l-1 \quad l \]

\[C_l \ (l \geq 3) : \quad 1 \quad 2 \quad \cdots \quad l-2 \quad l-1 \quad l \]

\[D_l \ (l \geq 4) : \quad 1 \quad 2 \quad \cdots \quad l-3 \quad l-2 \quad \cdots \]

\[\vdots \]
Dynkin diagrams

\[E_6 : \]
\[
\begin{array}{cccccc}
1 & 2 & 4 & 5 & 6 & 3 \\
\end{array}
\]

\[E_7 : \]
\[
\begin{array}{ccccccccc}
1 & 2 & 4 & 5 & 6 & 7 & 3 \\
\end{array}
\]

\[E_8 : \]
\[
\begin{array}{cccccccc}
1 & 2 & 4 & 5 & 6 & 7 & 8 & 3 \\
\end{array}
\]

\[F_4 : \]
\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array}
\]

\[G_2 : \]
\[
\begin{array}{cccc}
1 & 2 \\
\end{array}
\]